• History

What Actress Hedy Lamarr Said About Her Skill as an Inventor

2 minute read

During the height of her movie career, Hedy Lamarr—who was born on this day, Nov. 9, in 1914—got most of her press for her acting roles and for her many marriages and divorces. She was a beauty who made her name by appearing nude in the 1933 Czech film Ecstasy, but she didn’t necessarily hold that particular quality in high regard. “Any girl can be glamorous,” she once said. “All you have to do is stand still and look stupid.”

She proved that she was anything but, however, as the 20th century moved into its second half and her film appearances grew fewer. “Admirers of the 1930s movie Ecstasy liked the unadorned way Hedy Lamarr took to the water-but they might be surprised to learn that Hedy, now sixtyish, has genuine nautical skills,” TIME noted in 1974 when she was fêted on National Inventors Day. “She is co-inventor of a system for guiding torpedoes to their targets that was considered for use in World War II.”

In response to the praise, she demurred: “Improving things comes naturally to me.”

Still, Lamarr was no stranger to being the center of attention. When she died in 2000, her former costar Bob Hope wrote a remembrance for TIME, in which he recalled her natural ability to do just that:

I first met Hedy at the Hollywood Canteen—she was handing out autographs…I was washing dishes. That’s not quite true—she was a regular there, and danced and talked with the servicemen, cooked and served the food. My doing the dishes–now, that’s true. Not a very good billing then, but I shared equal billing with her in our film My Favorite Spy in 1951. I played two parts, and both of them were Hedy’s lovers. How about that for overtime?

At the Academy Awards, she was always good material. In 1943 I got laughs with, “During the dinner, I gave one of the greatest performances ever seen in Hollywood. I sat next to Hedy Lamarr and had to act as though I was interested in the food.”

Read the full obituary, here in the TIME Vault: Hedy Lamarr

Read More: LIFE With Hedy Lamarr: Stardom, Scandal and One Amazing Invention

See Original Models of the Apple I and Other Iconic American Inventions

The style of bed and platen printing press in this patent model inspired Issac Adams’ design of the later Adams Power Press, which was praised by early 19th century printers for its production of quality book work.
Printing Press, 1830: Issac Adams, (Unnumbered Patent) The style of bed and platen printing press in this patent model inspired Issac Adams’ design of the later Adams Power Press, which was praised by early 19th century printers for its production of quality book work. Courtesy Smithsonian National Museum of American History
Samuel F. B. Morse converted an artist’s canvas stretcher into a telegraph receiver that recorded a message as a wavy line on a strip of paper. His telegraph transmitter sent electric pulses representing letter and numbers that activated an electromagnet on the receiver.
Telegraph, 1837: Samuel F. B. Morse, Prototype. Samuel F. B. Morse converted an artist’s canvas stretcher into a telegraph receiver that recorded a message as a wavy line on a strip of paper. His telegraph transmitter sent electric pulses representing letter and numbers that activated an electromagnet on the receiver. Courtesy Smithsonian National Museum of American History
Violin, 1852: William S. Mount, (Patent No. 8981). William S. Mount proposed creating violins with concave or hollow backs. This patent model represented a design innovation that would minimize the strain on the violin soundboard and avoid interference with the “sonorous and vibrating qualities” of the instrument.
Violin, 1852: William S. Mount, (Patent No. 8981). William S. Mount proposed creating violins with concave or hollow backs. This patent model represented a design innovation that would minimize the strain on the violin soundboard and avoid interference with the “sonorous and vibrating qualities” of the instrument. Courtesy Smithsonian National Museum of American History
Typewriter, 1868: C. Latham Sholes, Carlos Glidden & Samuel W. Soule (Patent No. 79265). This patent model was created by the three Milwaukee inventors who made progress towards a viable typewriting machine. Six years later, Remington & Sons produced the first commercially successful machine, bearing the names of Sholes and Glidden. Courtesy Smithsonian National Museum of American History
Sewing Machine, 1873: Helen Blanchard, (Patent No. 141987) This patent model for an improvement in sewing machines introduced the buttonhole stitch. Blanchard received some 28 patents, many having to do with sewing. She is best remembered for another overstitch sewing invention, the “zigzag.”
Sewing Machine, 1873: Helen Blanchard, (Patent No. 141987). This patent model for an improvement in sewing machines introduced the buttonhole stitch. Blanchard received some 28 patents, many having to do with sewing. She is best remembered for another overstitch sewing invention, the “zigzag.” Courtesy Smithsonian National Museum of American History
Camera Shutter, 1879: Eadweard Muybridge, (Patent No. 212865) This “Method and Apparatus for Photographing Objects in Motion” was adapted to photographic equipment. As demonstrated with this patent model, it could produce images of subjects in rapid motion. It was used by Eadweard Muybridge in his celebrated animal locomotion photography.
Camera Shutter, 1879: Eadweard Muybridge, (Patent No. 212865). This “Method and Apparatus for Photographing Objects in Motion” was adapted to photographic equipment. As demonstrated with this patent model, it could produce images of subjects in rapid motion. It was used by Eadweard Muybridge in his celebrated animal locomotion photography. Courtesy Smithsonian National Museum of American History
Incandescent Lamp, 1881: Thomas Edison (Patent No. 239373) Thomas Edison submitted this model to patent a variation on his newly invented light bulb. Although he never put this design into production, this lamp could be disassembled to replace a burned-out filament.
Incandescent Lamp, 1881: Thomas Edison (Patent No. 239373). Thomas Edison submitted this model to patent a variation on his newly invented light bulb. Although he never put this design into production, this lamp could be disassembled to replace a burned-out filament. Courtesy Smithsonian National Museum of American History
Stephanie Kwolek (Patent Nos. 3819587 and RE30352): High-Strength Fiber, 1965 Stephanie Kwolek’s 1965 discovery at DuPont of strong polymer fibers resulted in DuPont Kevlar, best known for its use in bullet-resistant body armor and used in myriad other applications.
High-Strength Fiber, 1965: Stephanie Kwolek (Patent Nos. 3819587 and RE30352). Kwolek’s 1965 discovery at DuPont of strong polymer fibers resulted in DuPont Kevlar, best known for its use in bullet-resistant body armorCourtesy Hagley Museum and Library
Steve Jobs (Patent No. 7166791) & Steve Wozniak (Patent No. 4136359): Apple I Computer, 1976. In 1976 the first form of computer designed by Stephen Wozniak and sold by Wozniak in conjunction with Steve Jobs was sold, and became a leader in personal computing. Originally marketed to hobbyists only primarily as a fully assembled circuit board; purchasers had to add their own case and monitor in order to create a working computer.
Apple I Computer, 1976: Steve Jobs (Patent No. 7166791) & Steve Wozniak (Patent No. 4136359). In 1976 the first form of computer designed by Stephen Wozniak and sold by Wozniak in conjunction with Steve Jobs was sold, and became a leader in personal computing. Originally marketed to hobbyists only primarily as a fully assembled circuit board; purchasers had to add their own case and monitor in order to create a working computer. Courtesy Smithsonian National Museum of American History
Artificial Heart, 1977: Robert Jarvik, M.D., Prototype. This electrohydraulic artificial heart is a prototype for what became the Jarvik-7 Total Artificial Heart, which was first implanted into a human in December 1982 at the University of Utah Medical Center. The two sides of the device are connected with Velcro.
Artificial Heart, 1977: Robert Jarvik, M.D., Prototype. This electrohydraulic artificial heart is a prototype for what became the Jarvik-7 Total Artificial Heart, which was first implanted into a human in December 1982 at the University of Utah Medical Center. The two sides of the device are connected with Velcro. Courtesy Smithsonian National Museum of American History

More Must-Reads From TIME

Write to Lily Rothman at lily.rothman@time.com