See a Page From a Gutenberg Bible in Close-Up

3 minute read

It’s hard to pin down the exact day the book was born, but August 24 is as fine a day to celebrate as any: it was on this day in 1456 that at least one copy of the original Gutenberg Bible was completed. You can zoom in on a page from that milestone text by rolling over it with your cursor (on your phone? Just click). This is Jerome’s epistle to Paulinus, which serves as the prologue to the Bible:

Print Collector-Getty Images

Because the colorful decorations were done by hand, each of the copies—about four dozen of which have survived intact, out of nearly 200—is slightly different, even though the actual text was printed with the same type.

As TIME explained in 1999, when it named Johann Gutenberg the most important person of the 15th century, non-European printers had figured out the idea of moveable type first—but dealing with more than 26 or so letter characters made it less efficient. Printing in Europe, meanwhile, was usually done by carving into a block of wood, which meant that once the printing form was made, you were stuck with it permanently. Having the idea of casting each letter separately and just moving them around wasn’t the only stumbling block for Gutenberg—he needed to find the metal that melted at the right temperature, he needed to find ink that wouldn’t smudge, he needed to design the press part of the machine—but it was a start.

Exactly what happened between his grand idea and the emergence of the first full Gutenberg Bible—like, for example, whether Gutenberg himself actually printed it—remains something of a mystery. But it was enough to get his name printed, as it were, in history:

By the time he was back in Mainz in 1448, Gutenberg had ironed out enough of these problems to persuade Johann Fust, a goldsmith and lawyer, to invest heavily in his new printing shop. Exactly what happened behind Gutenberg’s closed doors during the next few years remains unknown. But in 1455 visitors to the Frankfurt Trade Fair reported having seen sections of a Latin Bible with two columns of 42 lines each printed–printed–on each page. The completed book appeared about a year later; it did not bear its printer’s name, but it eventually became known as the Gutenberg Bible.

Read more about Gutenberg and others, here in the TIME Vault: The Most Important People of the Millennium

See Original Models of the Apple I and Other Iconic American Inventions

The style of bed and platen printing press in this patent model inspired Issac Adams’ design of the later Adams Power Press, which was praised by early 19th century printers for its production of quality book work.
Printing Press, 1830: Issac Adams, (Unnumbered Patent) The style of bed and platen printing press in this patent model inspired Issac Adams’ design of the later Adams Power Press, which was praised by early 19th century printers for its production of quality book work. Courtesy Smithsonian National Museum of American History
Samuel F. B. Morse converted an artist’s canvas stretcher into a telegraph receiver that recorded a message as a wavy line on a strip of paper. His telegraph transmitter sent electric pulses representing letter and numbers that activated an electromagnet on the receiver.
Telegraph, 1837: Samuel F. B. Morse, Prototype. Samuel F. B. Morse converted an artist’s canvas stretcher into a telegraph receiver that recorded a message as a wavy line on a strip of paper. His telegraph transmitter sent electric pulses representing letter and numbers that activated an electromagnet on the receiver. Courtesy Smithsonian National Museum of American History
Violin, 1852: William S. Mount, (Patent No. 8981). William S. Mount proposed creating violins with concave or hollow backs. This patent model represented a design innovation that would minimize the strain on the violin soundboard and avoid interference with the “sonorous and vibrating qualities” of the instrument.
Violin, 1852: William S. Mount, (Patent No. 8981). William S. Mount proposed creating violins with concave or hollow backs. This patent model represented a design innovation that would minimize the strain on the violin soundboard and avoid interference with the “sonorous and vibrating qualities” of the instrument. Courtesy Smithsonian National Museum of American History
Typewriter, 1868: C. Latham Sholes, Carlos Glidden & Samuel W. Soule (Patent No. 79265). This patent model was created by the three Milwaukee inventors who made progress towards a viable typewriting machine. Six years later, Remington & Sons produced the first commercially successful machine, bearing the names of Sholes and Glidden. Courtesy Smithsonian National Museum of American History
Sewing Machine, 1873: Helen Blanchard, (Patent No. 141987) This patent model for an improvement in sewing machines introduced the buttonhole stitch. Blanchard received some 28 patents, many having to do with sewing. She is best remembered for another overstitch sewing invention, the “zigzag.”
Sewing Machine, 1873: Helen Blanchard, (Patent No. 141987). This patent model for an improvement in sewing machines introduced the buttonhole stitch. Blanchard received some 28 patents, many having to do with sewing. She is best remembered for another overstitch sewing invention, the “zigzag.” Courtesy Smithsonian National Museum of American History
Camera Shutter, 1879: Eadweard Muybridge, (Patent No. 212865) This “Method and Apparatus for Photographing Objects in Motion” was adapted to photographic equipment. As demonstrated with this patent model, it could produce images of subjects in rapid motion. It was used by Eadweard Muybridge in his celebrated animal locomotion photography.
Camera Shutter, 1879: Eadweard Muybridge, (Patent No. 212865). This “Method and Apparatus for Photographing Objects in Motion” was adapted to photographic equipment. As demonstrated with this patent model, it could produce images of subjects in rapid motion. It was used by Eadweard Muybridge in his celebrated animal locomotion photography. Courtesy Smithsonian National Museum of American History
Incandescent Lamp, 1881: Thomas Edison (Patent No. 239373) Thomas Edison submitted this model to patent a variation on his newly invented light bulb. Although he never put this design into production, this lamp could be disassembled to replace a burned-out filament.
Incandescent Lamp, 1881: Thomas Edison (Patent No. 239373). Thomas Edison submitted this model to patent a variation on his newly invented light bulb. Although he never put this design into production, this lamp could be disassembled to replace a burned-out filament. Courtesy Smithsonian National Museum of American History
Stephanie Kwolek (Patent Nos. 3819587 and RE30352): High-Strength Fiber, 1965 Stephanie Kwolek’s 1965 discovery at DuPont of strong polymer fibers resulted in DuPont Kevlar, best known for its use in bullet-resistant body armor and used in myriad other applications.
High-Strength Fiber, 1965: Stephanie Kwolek (Patent Nos. 3819587 and RE30352). Kwolek’s 1965 discovery at DuPont of strong polymer fibers resulted in DuPont Kevlar, best known for its use in bullet-resistant body armorCourtesy Hagley Museum and Library
Steve Jobs (Patent No. 7166791) & Steve Wozniak (Patent No. 4136359): Apple I Computer, 1976. In 1976 the first form of computer designed by Stephen Wozniak and sold by Wozniak in conjunction with Steve Jobs was sold, and became a leader in personal computing. Originally marketed to hobbyists only primarily as a fully assembled circuit board; purchasers had to add their own case and monitor in order to create a working computer.
Apple I Computer, 1976: Steve Jobs (Patent No. 7166791) & Steve Wozniak (Patent No. 4136359). In 1976 the first form of computer designed by Stephen Wozniak and sold by Wozniak in conjunction with Steve Jobs was sold, and became a leader in personal computing. Originally marketed to hobbyists only primarily as a fully assembled circuit board; purchasers had to add their own case and monitor in order to create a working computer. Courtesy Smithsonian National Museum of American History
Artificial Heart, 1977: Robert Jarvik, M.D., Prototype. This electrohydraulic artificial heart is a prototype for what became the Jarvik-7 Total Artificial Heart, which was first implanted into a human in December 1982 at the University of Utah Medical Center. The two sides of the device are connected with Velcro.
Artificial Heart, 1977: Robert Jarvik, M.D., Prototype. This electrohydraulic artificial heart is a prototype for what became the Jarvik-7 Total Artificial Heart, which was first implanted into a human in December 1982 at the University of Utah Medical Center. The two sides of the device are connected with Velcro. Courtesy Smithsonian National Museum of American History

More Must-Reads from TIME

Write to Lily Rothman at lily.rothman@time.com