NASA Spacecraft Wakes Up as It Approaches Pluto

1 minute read

A NASA spacecraft has emerged from hibernation in preparation for completing its nine-year, 2.9-billion mile journey to observe Pluto from up close, the space agency said.

Sending its signal at the speed of light, the New Horizons ship beamed a report down to Earth that it was back in active mode as of Dec. 6.

“Technically, this was routine, since the wake-up was a procedure that we’d done many times before,” said Glen Fountain, the mission’s project manager. “Symbolically, however, this is a big deal. It means the start of our pre-encounter operations.”

After tests early next year, the spacecraft will collect data and images about Pluto and its surrounding moons. It will come closest to the dwarf planet on July 14.

Photos from the Curiosity Rover’s First 2 Incredible Years on Mars

A full-circle view released by NASA on June 20, 2013, combined nearly 900 images taken by NASA's Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows NASA's Mars rover Curiosity at the 'Rocknest' site where the rover scooped up samples of windblown dust and sand.
A full-circle view released by NASA on June 20, 2013, combined nearly 900 images taken by NASA's Curiosity Mars rover, generating a panorama with 1.3 billion pixels in the full-resolution version. The view is centered toward the south, with north at both ends. It shows NASA's Mars rover Curiosity at the 'Rocknest' site where the rover scooped up samples of windblown dust and sand.NASA/JPL-Caltech/MSSS/EPA
NASA's Mars Curiosity Rover captures a selfie to mark a full Martian year -- 687 Earth days -- spent exploring the Red Planet.NASA/JPL
A detailed telephoto view from Curiosity shows Mount Sharp. The rover was expected to reach the 3.4-mile-high peak in February 2013, and the layered surface of the mountain should yield information to scientists on the planet's geological history.
A detailed telephoto view from Curiosity shows Mount Sharp. The rover was expected to reach the 3.4-mile-high peak in February 2013, and the layered surface of the mountain should yield information to scientists on the planet's geological history. University of Arizona/JPL-Caltech/NASA
The Mar's Curiosity Rover's first photo of earth from the surface of Mars via TwitterNASA
Curiosity's tracks was taken by Navcam onboard NASA's Mars rover Curiosity, on Nov. 18 2012.
Curiosity's tracks was taken by Navcam onboard NASA's Mars rover Curiosity, on Nov. 18 2012.University of Arizona/JPL-Caltech/NASA
Tracks from NASA's Curiosity Mars rover on Aug. 22, 2012 on Mars. NASA said the rover moved forward 15 feet, then rotated 120 degrees before reversing 8.2 feet during its first planned movement.
Tracks from NASA's Curiosity Mars rover on Aug. 22, 2012 on Mars. NASA said the rover moved forward 15 feet, then rotated 120 degrees before reversing 8.2 feet during its first planned movement.NASA/JPL-Caltech/MSSS/EPA
The highest point on Mount Sharp is visible from the Curiosity rover on Aug. 18, 2012. The Martian mountain rises 3.4 miles above the floor of Gale Crater. Geological deposits near the base of Mount Sharp are the destination of Curiosity's Mars mission.
The highest point on Mount Sharp is visible from the Curiosity rover on Aug. 18, 2012. The Martian mountain rises 3.4 miles above the floor of Gale Crater. Geological deposits near the base of Mount Sharp are the destination of Curiosity's Mars mission.NASA/JPL-Caltech/MSSS/EPA
This image shows the robotic arm of NASA's Mars rover Curiosity with the first rock touched by an instrument on the arm.
This image shows the robotic arm of NASA's Mars rover Curiosity with the first rock touched by an instrument on the arm. JPL-Caltech/NASA
This patch of windblown sand and dust downhill from a cluster of dark rocks is the "Rocknest" site, which was the location for the first use of the scoop on the arm of Curiosity.
This patch of windblown sand and dust downhill from a cluster of dark rocks is the "Rocknest" site, which was the location for the first use of the scoop on the arm of Curiosity.JPL-Caltech/MSSS/NASA
A small bright object on the ground beside the rover at the "Rocknest" site. The rover team has assessed this object as debris from the spacecraft, possibly from the events of landing on Mars.
A small bright object on the ground beside the rover at the "Rocknest" site. The rover team has assessed this object as debris from the spacecraft, possibly from the events of landing on Mars. NASA
NASA's Mars rover Curiosity cut a wheel scuff mark into a wind-formed ripple at the "Rocknest" site to examine the particle-size of the ripple. For scale, the width of the wheel track is about 16 inches (40 centimeters).
NASA's Mars rover Curiosity cut a wheel scuff mark into a wind-formed ripple at the "Rocknest" site to examine the particle-size of the ripple. For scale, the width of the wheel track is about 16 inches (40 centimeters).JPL-Caltech/NASA
A Martian rock illuminated by white-light LEDs is part of the first set of nighttime images taken by the Mars Hand Lens Imager camera.
A Martian rock illuminated by white-light LEDs is part of the first set of nighttime images taken by the Mars Hand Lens Imager camera. NASA
When the rover landed, it sent images from one of the hazard-avoidance cameras. The image at left was taken before the camera's dust cover was removed, the image on the right was taken after. These engineering cameras are located at the rover's base, and are lower-resolution than the color images produced by the rover's mast.
When the rover landed, it sent images from one of the hazard-avoidance cameras. The image at left was taken before the camera's dust cover was removed, the image on the right was taken after. These engineering cameras are located at the rover's base, and are lower-resolution than the color images produced by the rover's mast. University of Arizona/JPL-Caltech/NASA
NASA's Curiosity rover and its parachute are seen by NASA's Mars Reconnaissance Orbiter as Curiosity descends to the surface around 10:32 p.m. PDT, Aug. 5, or 1:32 a.m. EDT, Aug. 6, 2012. The rover is equipped with a nuclear-powered lab capable of vaporizing rocks and ingesting soil, measuring habitability, and whether Mars ever had an environment able to support life.
NASA's Curiosity rover and its parachute are seen by NASA's Mars Reconnaissance Orbiter as Curiosity descends to the surface around 10:32 p.m. PDT, Aug. 5, or 1:32 a.m. EDT, Aug. 6, 2012. The rover is equipped with a nuclear-powered lab capable of vaporizing rocks and ingesting soil, measuring habitability, and whether Mars ever had an environment able to support life.University of Arizona/JPL-Caltech/NASA

More Must-Reads from TIME

Write to Justin Worland at justin.worland@time.com