TIME medicine

Exclusive: Meet the World’s First Baby Born With an Assist from Stem Cells

This newborn is the first baby in the world born using a breakthrough IVF treatment

Doctors in Canada have begun a new chapter in medical history, delivering the first in a wave of babies expected to be born this summer through a technique that some experts think can dramatically improve the success rate of in vitro fertilization (IVF).

Now 22 days old, Zain Rajani was born through a new method that relies on the discovery that women have, in their own ovaries, a possible solution to infertility caused by poor egg quality. Pristine stem cells of healthy, yet-to-be developed eggs that can help make a woman’s older eggs act young again. Unlike other kinds of stem cells, which have the ability to develop into any kind of cell in the body, including cancerous ones, these precursor cells can only form eggs.

In May 2014, Zain’s mother, Natasha Rajani, now 34, had a small sliver of her ovarian tissue removed in a quick laproscopic procedure at First Steps Fertility in Toronto, Canada, where she lives. Scientists from OvaScience, the fertility company that is providing Augment, then identified and removed the egg stem cells and purified them to extract their mitochondria.

Mitochondria are the powerhouses of the cell, a molecular battery that energizes everything a cell does. Adding the mitochondria from these egg precursor cells to Natasha’s poor-quality eggs and her husband Omar’s sperm dramatically improved their IVF results. In the Rajanis’ first traditional-IVF attempt, Natasha produced 15 eggs, but only four were fertilized—just one of those matured to the point were Natasha’s doctor felt comfortable transferring it. “I knew it wasn’t the best-quality embryo, but it was what she had,” says. Dr. Marjorie Dixon, of First Steps Fertility.

With Augment, the Rajanis produced four embryos, two of which have been frozen should the couple decide to have more children. Another one became baby Zain.

It’s not currently available in the U.S., since the Food and Drug Administration (FDA) considers the process of introducing mitochondria a form of gene therapy, which it regulates. So far, some three dozen women in four countries have tried the technique, and eight are currently pregnant. All of the women have had at least one unsuccessful cycle of IVF; some have had as many as seven.

“We could be on the cusp of something incredibly important,” says Dr. Owen Davis, president of the American Society of Reproductive Medicine (ASRM). “Something that is really going to pan out to be revolutionary.”

The Next Big Thing in IVF

The technique is indeed poised to usher in the next big advance in IVF; since the first baby, Louise Brown, was born using the process in 1978, the procedure has changed little. Scientists have made incremental advances in fine-tuning the procedure, but taken together, these improvements have nudged pregnancy rates upward by only a percent or two over the course of 35 years. As it stands, the IVF success rate is about 38% for women in their late 30s and 18% for those in their early 40s. Natasha’s first IVF cycle differed little from the one that produced Brown more than 35 years ago.

Augment emerged from a breakthrough made in 2004 by biologist Jonathan Tilly, then at Harvard Medical School and now chair of biology at Northeastern University. He found that cells scraped from the outer surface of the ovary contain the precursor cells that can provide a more reliable source of energy to older eggs. “The technique addresses a void now in IVF,” says Tilly. “No cell culture can circumvent poor egg quality or an egg that is simply too tired to execute what it is capable of doing. We are taking patients with a zero percent pregnancy rate, patients who have failed IVF because of poor egg quality, and getting them pregnant.”

The Rajanis had tried for four years to get pregnant, turning to fertility drugs, intrauterine insemination, and a naturopath before trying their first attempt at IVF. Natasha became pregnant once, but miscarried a few weeks later. “I tried to remain positive, thinking there is a light at the end of the tunnel, and that a baby will be there at the end,” she says of all the misses.

What finally made the difference wasthe population of her own egg stem cells. What makes these cells so enticing to scientists is that they come from the mother herself. Mitochondria contain their own DNA, and in a controversial decision the U.K. government recently approved so-called “three-person babies,” where mitochondrial DNA from a donor is introduced into the egg of a woman with mitochondrial disease. When the egg is then fertilized and results in a live birth, it can raise ethical questions, biological concerns and conflicts about parenthood.

With Augment, the cells used—and their mitochondrial genes—are from the mother’s own ovaries. Still, the FDA requested more studies on the effect of adding mitochondria, even from the mother who provides the egg, to the IVF process. OvaScience plans to conduct 1000 cycles using Augment this year, and generate more data that will help bring the procedure to the U.S.

Because the procedure is so new, some reproductive science experts are skeptical. What’s lacking, they say, is convincing evidence comparing pregnancy rates of women undergoing Augment to those with similar infertility problems who didn’t use the technique. So far, no formal clinical trials have been conducted; the only data on the procedure comes from recent presentations by Dr. Robert Casper of University of Toronto and Dr. Kutluk Oktay from Gen-ART IVF in Ankara, Turkey, both of whom are advisors to OvaScience.

“We’re not yet sure the scientific model has proven what the outcomes would be if you use the mitochondria of a younger egg, or from an egg stem cell,” says Davis of ASRM. “It’s a fascinating concept but we just haven’t seen the studies yet.”

In the world of infertility, however, such data are historically hard to come by. A lack of regulation of most reproductive technologies—the ones that don’t fall under the jurisdiction of the FDA as either drugs, devices or gene therapy—and the dominance of business-minded scientists has rushed new methods to clinics, often before their effectiveness has been fully proven.

Tilly counters doubters with evidence from other species that these cells can do what OvaScience has said they can. Egg precursor cells extracted from ovarian tissue from rats, mice, monkeys, pigs and women, for instance, have developed into immature eggs and, in the case of rats and mice, those eggs have mature and produced viable offspring. “Mitochondria from egg precursors rejuvenate the egg to bring it back to a high quality state,” says Tilly.

That appears to be the case with the Rajanis, and time will tell whether that ends up holding true for the other women trying Augment, too. “We see Zain as a symbol of hope for all couples struggling with infertility,” says Natasha. “While the process is long, emotional and physically draining, there is light at the end of the tunnel—and that light for us is Zain.”

For more on Zain and this new approach for infertility, see the May 18, 2015, issue of TIME.

TIME Innovation

Five Best Ideas of the Day: February 17

The Aspen Institute is an educational and policy studies organization based in Washington, D.C.

1. Is the Taliban’s fracturing a sign of its demise or a possible turn to a more lethal strategy?

By Sundarsan Raghavan in the Washington Post

2. To fight cybercrime, President Obama needs Silicon Valley.

By Katie Benner in Bloomberg View

3. The FDA needs updated systems to review drugs — made from our own cells — that target cancer and more.

By Peter W. Huber in City Journal

4. Our high incarceration rate no longer reduces crime.

By Lauren-Brooke Eisen in USA Today

5. Better than an action movie: Catch a college lecture on your next commercial flight.

By Kim Clark in Money

The Aspen Institute is an educational and policy studies organization based in Washington, D.C.

TIME Ideas hosts the world's leading voices, providing commentary and expertise on the most compelling events in news, society, and culture. We welcome outside contributions. To submit a piece, email ideas@time.com.

TIME Innovation

Five Best Ideas of the Day: January 15

The Aspen Institute is an educational and policy studies organization based in Washington, D.C.

1. India and the U.S. have much to gain from strengthening their “unique but sometimes frustrating partnership.”

By Nicholas Burns in the Boston Globe

2. Big energy is betting on power storage tools that let customers take advantage of variable energy prices and stock up when rates are low.

By Ucilia Wang in Forbes

3. With class replacing race as a dividing line, some find South Africa is a “less equal place” now than under apartheid.

By Jeb Sharp at PRI’s The World

4. Preliminary research with stem cells shows how the versatile therapy could effectively cure type-1 diabetes.

By Haley Bridger in the Harvard Gazette

5. A critical piece of improving American education is improving teacher quality, and that is finally happening.

By Dan Goldhaber and Joe Walch in Education Next

The Aspen Institute is an educational and policy studies organization based in Washington, D.C.

TIME Ideas hosts the world's leading voices, providing commentary and expertise on the most compelling events in news, society, and culture. We welcome outside contributions. To submit a piece, email ideas@time.com.

TIME Cancer

Most Cancer Is Beyond Your Control, Breakthrough Study Finds

There’s a lot we can do to protect ourselves from certain cancers — don’t smoke, avoid prolonged exposure to the sun, and try not to breathe or ingest too many chemical pollutants in the air or our food. But scientists have always known that this was only part of the cancer story. There’s also heredity, but that only explains about 5% to 10% of cancer. The truth of the matter is that some tumors emerge simply at random. But how much of malignancy can be attributed to this unfortunate roll of the dice? What really causes cancer?

Christian Tomasetti and Bert Vogelstein at Johns Hopkins University believe they may have found an answer, and it’s likely to turn our understanding of cancer — and how it should be diagnosed and treated — on its head. In a groundbreaking paper published in Science, the duo describe a new factor, a tissue’s stem cells, that may explain as much as two-thirds of the difference in cancer risk among different tissues.

Many tissues in the body have stem cells that serve as factories for churning out more cells of the same kind; it’s what keeps our skin cells refreshed, and our blood and immune cells young and vigorous. This replicative power is the engine that keeps the body going, allowing tissues to replace cells as they die off. But it’s also the process behind cancer, since cancer is caused by cells that pick up mutations in their DNA when they divide — and stem cells are the only population that copy their DNA and divide to make more cells. Only a small proportion of a tissue’s cells are made up of stem cells, so Tomasetti and Vogelstein decided to map out whether the number of stem cells in a specific tissue bears any relationship to its tendency to develop cancer.

MORE Promising New Cancer Treatment Uses Immune Cells

Indeed, when they charted out the stem cell data for 31 types of tissues, they found a dramatic connection between the two — the more stem cells the tissue had, the higher its incidence of cancer over a person’s life time on average. “Think of cancer as the risk of having an accident if you are driving a car,” says Tomasetti, a biostatistician who holds positions in the department of oncology at Johns Hopkins Kimmel Cancer Center and the Johns Hopkins Bloomberg School of Public Health. “If you drive the car on a cross country trip, your risk of an accident is much higher than if you take a local trip to the grocery store. The risk correlates to the length of the trip. The trip to the grocery store might be thought of as bone cancer, which has few stem cell divisions. While the cross country trip might be more like colon cancer, which has many more cell divisions.”

In fact, the correlation held strong among cancers that were both common and more rare. The more likely those cells would divide and develop DNA errors or mutations in the process that led to uncontrolled growth, the more likely that tissue would develop tumors.

“It was quite surprising to us. We think it’s pretty big,” he says. “About 65% of cancer incidence across tissue types appears to be explained by the number of stem cell divisions.”

MORE Stem Cells That Kill

Having a detailed understanding of both how large a tissue’s stem cell population is, as well as how active it is, could be a determining factor in whether it’s likely to develop cancer. Both the brain cells that can cause glioblastoma and medulloblastoma, and the colon contain about the same number of stem cells, Tomasetti estimates — about one hundred million. But the colon stem cells divide about 6000 times on average during lifetime, compared to nearly zero for the brain stem cells. That leads to rates of colon cancer that are 22 times higher than rates of the brain tumors.

PrintCredit: C. Tomasetti, B. Vogelstein and illustrator Elizabeth Cook, Johns Hopkins

Such an explanation could also resolve some of cancer’s mysteries — why people who don’t smoke still get lung cancer in surprising numbers, or why rates of colon cancer are higher than rates of cancer in the small intestine, despite being shorter in length. One reason, says Tomasetti, could have to do with the different stem cell activity in these tissues.

This finding potentially changes the landscape of cancer. In recent decades, cancer rates have come down due to aggressive efforts to educate and motivate people to take positive steps toward preventing cancer in the first place, such as quitting smoking and avoiding the sun’s ultraviolet rays. Have those messages been wrong?

Not exactly. Tomasetti says that the study shows that it’s time to redirect that cancer strategy a bit — not abandon it. For example, he and Vogelstein propose looking at cancers in two categories, those that are primarily due to genetic bad luck, and those that are due to that unfortunate roll of the genetic dice plus environmental or hereditary factors. So melanoma, ovarian cancer, many brain cancers, lung cancer among non-smokers, the most common leukemias and bone cancers, for example, are pretty much out of people’s control. They’re the result of the random mutations caused by the stem cells dividing in these tissues — bone, blood, ovaries, brain and skin — that make mistakes that turn malignant. For these cancers, changing your lifestyle or trying other interventions to stop the cancer from occurring in the first place won’t help. But being vigilant about screening, and picking up the first signs of trouble early, can be life saving.

MORE This New Kind of Stem Cell May Revolutionize How We Treat Diseases

For the other type of cancers, those that are the product of both stem cell mutations and heredity or other exposures, continuing with proven prevention methods, which include screening in cases of inherited disease, as well as quitting smoking and reducing exposure to radiation and carcinogens, is still critical. That’s what has lowered rates of lung cancer among smokers, for example, and colon cancer among those with hereditary disease.

“Everything we know about altering lifestyles to prevent cancer from the environmental point of view we absolutely need to continue doing,” says Tomasetti. “If anything it puts more stress on the need to spend even more money on early detection. It may be the key tool for quite a few cancer types.”

Tomasetti admits that two common cancers are missing from the study — breast cancer and prostate cancer. That’s because knowledge about their stem cell populations, and how often those tissues renew, isn’t quite as solid as it is for tissues such as colon. “We are working on that,” he says. “We hope this type of work highlighting the importance of self renewal will cause others to investigate these stem cell populations in more detail as well.”

In the meantime, he stresses that while we may not be able to prevent the tumors from forming, it’s still possible to treat them and potentially save lives by finding them early and removing them or using chemotherapy or radiation to keep them under control. “My biggest fear is that people will say forget about it, and then do nothing. The opposite is true. We need to do everything we did before, but we want to do it even more than before,” he says.

Read next: Your Chances of Surviving Cancer May Depend on Where You Live

TIME Cancer

Most Types of Cancer Just ‘Bad Luck,’ Researchers Say

488635633
JUAN GARTNER—Getty Images/Science Photo Library RF Lymphocytes and cancer cell

Two thirds of cancers could be explained as biological misfortune

Researchers have found that bad luck plays a major role in determining most types of cancer, rather than genetics or risky lifestyle choices such as smoking.

The results, published in the journal Science on Thursday, found that random DNA mutations that amass in the body when stem cells divide into various tissues cause two thirds of cancers.

After examining 31 cancer types, researchers found 22 were from mutations in stem cells that could not be prevented.

Cancers that could be explained with biological bad luck included pancreatic, leukemia, bone, testicular, ovarian and brain cancer.

But the researchers say lifestyle choices such as avoiding smoking, eating healthily and staying out of the sun will help to prevent certain cancers, just not all of them.

Read next: Medicine Is About to Get Personal

Listen to the most important stories of the day.

TIME medicine

This New Kind of Stem Cell May Revolutionize How We Treat Diseases

Scientists have created a new type of stem cell that could speed treatments for diseases and make them safer

Ever since Japanese researcher Shinya Yamanaka found a way to treat skin cells with four genes and reprogram them back to their embryonic state, scientists have been buzzing over the promise of stem cell therapies. Stem cells can be coaxed to become any of the body’s cell types, so they could potentially replace diseased or missing cells in conditions such as diabetes or Alzheimer’s. And Yamanaka’s method also meant that these cells could be made from patients themselves, so they wouldn’t trigger dangerous immune rejections.

Now scientists led by Dr. Andras Nagy at Mount Sinai Hospital Lunenfeld-Tanenbaum Research Institute in Toronto report an exciting new advance that could push stem cells even closer to the clinic. In a series of papers in the journals Nature and Nature Communications, the group describes a new class of stem cell, which they called F class, that they generated in the lab.

The F class cells, says Nagy, have a few advantages over the Yamanaka-generated induced pluripotent stem cells, or iPS cells. While the iPS cells are created by using viruses to introduce four genes that reprogram the cells, Nagy’s team relied on a technique they developed several years ago using transposons—small pieces of DNA that can insert themselves into different parts of a genome. Unlike viruses, these transposons can be popped out of the genome if they’re no longer needed, and they don’t carry the potential risk of viral infection.

MORE Stem-Cell Research: The Quest Resumes

Nagy’s team found that the transposons were much more reliable vehicles for delivering the reprogramming genes exactly where they were needed to efficiently turn the clock back on the skin cells. What’s more, they could use the common antibiotic doxycycline to turn the four genes on and off; adding doxycycline to the cell culture would trigger the transposons to activate, thus turning on the genes, while removing the antibiotic would turn them off.

In this way, says Nagy, he was able to pump up the efficiency of the reprogramming process. Using the Yamanaka method, it was hit-or-miss whether the viruses would find their proper place in a cell’s genome, and more uncertainty over how effectively it could direct the cell to activate the four reprogramming genes. “F class cells are much more similar [in the culture dish], like monozygotic twins while iPS cells are more like brothers and sisters,” he says.

That consistency is a potential advantage of the transposon method, since any stem cell-based treatment would require a robust population of stem cells which can then be treated with the proper compounds to develop into insulin-making pancreatic cells to treat diabetes, or new nerve cells to replace dying ones in Alzheimer’s, or fresh heart muscle to substitute for scarred tissue after a heart attack.

MORE Stem Cell Miracle? New Therapies May Cure Chronic Conditions like Alzheimer’s

Nagy’s team also described, with the most detail to date, exactly how mature cells like skin cells perform the ultimate molecular feat and become forever young again when exposed to the four genes. They analyzed the changes in the cells’ DNA, the proteins they made, and more. “It’s similar to high definition TV,” he says. “We see things much better with much more detail. We expect that having that high resolution characterization will allow us to better understand what is happening during this process at the molecular level. And obviously that better understanding is going to affect what we can do with these cells to make them better, safer and more efficient in cell-based treatments in the future.”

That may be years away yet, especially since some experts say that transposons may pose their own risk of wreaking DNA havoc on a cell’s genome. But having another type of stem cell that could potentially churn out healthy cells and tissues to replaced diseased ones is a welcome development.

TIME medicine

‘Bubble Boy’ Disease Cured With Stem Cells

Alysia Padilla-Vacarro and daughter Evangelina on the day of her gene therapy treatment. Evangelina, now two years old, has had her immune system restored and lives a healthy and normal life.
Courtesy of UCLA Alysia Padilla-Vacarro and daughter Evangelina on the day of her gene therapy treatment. Evangelina, now two years old, has had her immune system restored and lives a healthy and normal life.

Researchers have treated more than two dozen patients with a treatment made from their own bone marrow cells

Alysia Padilla-Vaccaro and Christian Vaccaro owe their daughter’s life to stem cells. Evangelina, now two, is alive today because she saved herself with her own bone marrow cells.

Evangelina, a twin, was born with a severe immune disorder caused by a genetic aberration that makes her vulnerable to any and all bacteria and viruses; even a simple cold could be fatal. But doctors at University of California Los Angeles (UCLA) Broad Stem Cell Research Center gave her a new treatment, using her own stem cells, that has essentially cured her disease. She’s one of 18 children who have been treated with the cutting-edge therapy, and the study’s leader, Dr. Donald Kohn, says that the strategy could also be used to treat other gene-based disorders such as sickle cell anemia.

Known to doctors as adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), it’s better known as “bubble boy” disease, since children born with the genetic disorder have immune systems so weak that they need to stay in relatively clean and germ-free environments. Until Evangelina and her sister Annabella were 11 months old, “We were gowned and masked and did not go outside,” says their mother Alysia Padilla-Vaccaro. “Our children did not physically see our mouths until then because we were masked all the time. We couldn’t take them outside to take a breath of fresh air, because there is fungus in the air, and that could kill her.”

Both parents wore masks at work to lower the chances they would be exposed to germs that they might bring back home. And they took showers and changed clothes as soon as they entered the house.

MORE: Gene-Therapy Trial Shows Promise Fighting ‘Bubble Boy’ Syndrome

SCID is caused by a genetic mutation in the ADA gene, which normally produces the white blood cells that are the front lines of the body’s defense against bacteria and viruses. The Vaccaros decided to treat Annabella in the same way that they cared for Evangelina; “They were crawling and playing with each other, and every toy they sucked on, they stuck in each other’s hands and each other’s mouth, so we couldn’t take one outside to have a grand old time and potentially bring something back that could harm her sister,” says Padilla-Vaccaro.

Courtesy of UCLAChristian and Alysia Padilla-Vaccaro and their healthy twins Annabella (left) and Evangelina. Now with a newly-restored immune system, Evangelina lives a normal and healthy life.

The only treatments for SCID are bone marrow transplants from healthy people, ideally a matched sibling; the unaffected cells can then repopulate the immune system of the baby with SCID. But despite being her twin, Annabella wasn’t a blood match for her sister, nor were her parents. Padilla-Vaccaro and her husband, Christian, were considering unrelated donors but were concerned about the risk of rejection. “We would be trying to fix one problem and getting another,” she says.

MORE: Stem Cells Allow Nearly Blind Patients to See

That’s when the doctors at the Children’s Hospital at Orange County, where Evangelina was diagnosed, told her parents about a stem cell trial for SCID babies at UCLA, led by Dr. Donald Kohn. “As soon as they said trial, I thought, ‘my kid is dead,” says Padilla-Vaccaro of the last resort option. But a dozen children born with other forms of SCID—in which different mutations caused the same weak immune systems—who were successfully treated by Kohn convinced the couple that the therapy was worth trying. Kohn had one spot left in the trial and was willing to hold it for Evangelina until she matured more. Born premature, she was diagnosed at six weeks old and needed more time for what was left of her immune system to catch up to weather the procedure.

When she was two months old, Evangelina was admitted to UCLA and had bone marrow drawn from her tiny hip. It contained the stem cells that go on to develop into all of the cells in the blood and immune systems. Kohn treated them with gene therapy, co-opting a modified virus to carry the healthy ADA gene so it could infect the stem cells from Evangelina’s bone marrow. The idea was that by transplanting these healthy ADA-containing cells back into Evangelina, she would soon be making her own healthy immune cells. And because they were made from her own cells, her body wouldn’t reject them.

MORE: Woman Receives First Stem Cell Therapy Using Her Own Skin Cells

“After the transplant of this miraculous tube of stem cells, which literally took five minutes, we had to just wait and see for a good six weeks,” says Padilla-Vaccaro. “The week after Christmas [in 2012], Dr. Kohn came in and told me, ‘It worked.’ It worked. Those words…besides the birth of my children, that day will always be the best day in my life.”

The success was a long time coming for Kohn as well. His group has been researching the best way to treat SCID with gene therapy for more than two decades. In the first trial, in 1993, they used cord blood, treating it with the healthy ADA gene and hoping enough of them would “take” to rebuild an immune system. It didn’t work.

In 2001, they tried a different way of delivering the precious gene in four patients. That failed as well.

MORE: Type 1 Diabetes Treatment Gets Boost from Stem Cells

Then, in 2009, he and his team began the trial that Evangelina eventually joined. After reading about a group in Italy that completely obliterated the patients’ existing immune systems with chemotherapy first, before introducing the new bone marrow cells to repopulate the system, Kohn tried that strategy on 10 babies. “Of all the patients we treated, all have had good immune reconstitution,” he says. “Within a month or two, we start seeing cells appear in the blood that are making the missing gene. When they are six months old or so, their immune systems are good enough for them to go out and not be protected, and by age two, they are pretty stable—their immune systems are reset.”

That’s where Evangelina is now, able to finally enjoy the world outside her home and the hospital. She got her first kisses from her parents when she was 18 months old. “My worry was that I couldn’t raise my daughter without her sister,” says Padilla-Vaccaro. “Now I don’t have to.”

TIME Brain

New Hope for Replacing Nerves Damaged by Parkinson’s Disease

Stem cells may provide a new way of regrowing the motor neurons affected by the movement disorder

Reporting in the journal Cell Stem Cell, scientists say that stem cells turned into motor nerves function nearly identically to fetal motor nerves: the kind now used to treat some patients with Parkinson’s disease. That could mean that the stem cells may become an important source of new nerves to replace the ones damaged in diseases like Parkinson’s.

In Parkinson’s, motor nerves that normally produce dopamine, which is critical for regulating muscle movements and controlling dexterity, are damaged, and dopamine levels drop dramatically. The researchers, led by Malin Parmar, an associate professor of regenerative neurobiology at Lund University, took human embryonic stem cells extracted from excess IVF embryos and treated them to develop into motor neurons. They transplanted these neurons into the brains of rats bred to develop Parkinson’s and found that the lab-made cells brought dopamine levels in these animals back to normal levels in five months. The nerves sent out long extensions to connect with other nerve cells in the brain—such networks are important to ensuring coordinated and regulated muscle movements, and without them, patients experience uncontrollable tremors. The effects were similar to those seen when fetal nerves are transplanted into Parkinson’s patients, a treatment currently used to help alleviate symptoms in some patients.

While the results are exciting, it’s just the first step in bringing stem cell-based treatments to human patients. The study did not delve into how well the new neurons functioned and whether they could reverse symptoms of Parkinson’s in the animals. And even if they do improve those symptoms, scientists still have to show that humans could get the same effects. In an editorial accompany the article, Roger Barker of Addenbrooke’s Hospital and the University of Cambridge warned that the exciting possibilities of stem-cell based therapies shouldn’t push scientists—or patients—to expect too much too soon. Before the cells can be tested in people, he writes, it’s necessary to have “a knowledge of what the final product should look like and the need to get there in a collaborative way without being tempted to take shortcuts, because a premature clinical trial could impact negatively on the whole field of regenerative medicine.”

TIME medicine

Stem Cells Allow Nearly Blind Patients to See

134970961
Photography by Peter A. Kemmer—Getty Images/Flickr RF Stem cells could lead to new treatments for eye disorders

Embryonic stem cells can be turned into a therapy to help the sight of the nearly blind

In a report published in the journal Lancet, scientists led by Dr. Robert Lanza, chief scientific officer at Advanced Cell Technology, provide the first evidence that stem cells from human embryos can be a safe and effective source of therapies for two types of eye diseases—age-related macular degeneration, the most common cause of vision loss in people over age 60, and Stargardt’s macular dystrophy, a rarer, inherited condition that can leave patients legally blind and only able to sense hand motions.

In the study, 18 patients with either disorder received transplants of retinal epithelial cells (RPE) made from stem cells that came from human embryos. The embryos were from IVF procedures and donated for research. Lanza and his team devised a process of treating the stem cells so they could turn into the RPE cells. In patients with macular degeneration, these are the cells responsible for their vision loss; normally they help to keep the nerve cells that sense light in the retina healthy and functioning properly, but in those with macular degeneration or Stargardt’s, they start to deteriorate. Without RPE cells, the nerves then start to die, leading to gradual vision loss.

MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions Like Alzheimer’s

The transplants of RPE cells were injected directly into the space in front of the retina of each patient’s most damaged eye. The new RPE cells can’t force the formation of new nerve cells, but they can help the ones that are still there to keep functioning and doing their job to process light and help the patient to see. “Only one RPE can maintain the health of a thousand photoreceptors,” says Lanza.

The trial is the only one approved by the Food and Drug Administration involving human embryonic stem cells as a treatment. (Another, the first to gain the agency’s approval, involved using human embryonic stem cells to treat spinal cord injury, but was stopped by the company.) Because the stem cells come from unrelated donors, and because they can grow into any of the body’s many cells types, experts have been concerned about their risks, including the possibility of tumors and immune rejection.

MORE: Early Success in a Human Embryonic Stem Cell Trial to Treat Blindness

But Lanza says the retinal space in the eye is the ideal place to test such cells, since the body’s immune cells don’t enter this space. Even so, just to be safe, the patients were all given drugs to suppress their immune system for one week before the transplant and for 12 weeks following the surgery.

While the trial was only supposed to evaluate the safety of the therapy, it also provided valuable information about the technology’s potential effectiveness. The patients have been followed for more than three years, and half of the 18 were able to read three more lines on the eye chart. That translated to critical improvements in their daily lives as well—some were able to read their watch and use computers again.

“Our goal was to prevent further progression of the disease, not reverse it and see visual improvement,” says Lanza. “But seeing the improvement in vision was frosting on the cake.”

Your browser is out of date. Please update your browser at http://update.microsoft.com