TIME space

Odds For Life on Mars Tick Up—a Little

High-tide: layering in a Mars rock photographed by Curiosity suggests the movement of long-ago water
High-tide: layering in a Mars rock photographed by Curiosity suggests the movement of long-ago water NASA/JPL

New findings about both methane and water boost the chances for biology

September of 2013 was a bad time for those who hope there’s life on Mars. We’ve had evidence for decades that water flowed freely across the surface of the Red Planet billions of years ago, and that evidence has only gotten stronger and stronger the closer we look. Not only was there potentially life-giving water back then: Mars also had the right kind of geology to support mineral-eating microbes. And while all of that was in the distant past, the detection of methane in the Martian atmosphere by Earth-based telescopes and Mars orbiters raised hopes that bacteria might still be thriving below the surface—not unreasonable, both because all manner of Earthly critters do perfectly well below-ground and because the vast majority of methane in our own atmosphere results from biological activity. Mars’s methane might come from a similar source.

But when the Curiosity rover sniffed the Martian air directly last year, it smelled…nothing. At most, there were just three parts per billion (ppb) of methane wafting around, and possibly much less than that. “We kind of thought we’d closed that chapter,” says Christopher Webster of the Jet Propulsion Laboratory, lead scientist for the instrument that did the sniffing. “A lot of people were very disappointed.”

Not any more, though. Just weeks after that dismal reading, Curiosity’s Tunable Laser Spectrometer (TLS) picked up a whiff of methane at a concentration of 5.5 parts per billion. “It took us by surprise,” says Webster, and over the next two months, he says, “every time we looked there was methane. Indeed, the concentrations even rose, to an average of 7.2 ppb over that period, he and his colleagues report in a new paper in Science.

And then, six weeks later, the methane was gone, and hasn’t been sniffed since. “It’s a fascinating episodic increase,” Webster says.

What he and his colleagues can’t say is where the methane is coming from. Because it’s transient, they think it’s probably from a fairly local source. But whether it’s biological or geological in origin, they don’t know. It’s wise to be cautious, however, says Christopher Chyba, a professor of astrophysics and international affairs at Princeton. “Hopes for biology on Mars have had a way of disappearing once Martian chemistry has been better understood. But figuring out what’s responsible for the methane is clearly a key astrobiological objective—whatever the answer turns out to be.”

That’s not the only important Mars-related paper in Science this week, either. Another, also based on Curiosity observations, concerns Mars’s long-lost surface water, and one of the most important points is that there’s a lot more of it left than most people realize—”enough,” says Jet Propulsion Laboratory scientist Paul Mahaffy, lead author of the paper, “to cover the surface to a depth of 50 meters [about 165 ft].” That doesn’t mean it’s accessible: it’s nearly all locked up in ice at the planet’s poles, but some is also entrained in the clay Curiosity dug into when it was prowling the Yellowknife Bay area of Gale Crater.

Some of that water, says Mahaffy, is tightly chemically bound to the clay and is not a big player in Mars’s modern environment. Some is not quite so locked down and has been interacting with the tenuous Martian atmosphere for the past three billion years. The hydrogen in Martian water, as in Earthly water, may contain both a single proton and a single electron, or a proton and electron plus a neutron—so-called heavy hydrogen, or deuterium. As the Martian atmosphere has thinned over the eons, the ratio of hydrogen to deuterium in the water has gradually been dropping, as the lighter version escapes more easily into space. Since the modern water is twice as rich in deuterium as the water from billions of years ago, that suggests that there was about twice as much surface water in total at the earlier time, but its hydrogen residue has vanished.

“That’s a fair bit of water,” says Mahaffy, “but it’s a lower limit. There could be much more beneath the surface today that we haven’t seen. It was a really interesting time. There were a lot of aqueous processes going on, and a lot of flowing water.”

Where there is (or was) water, there could be (or could have been) life. For Mars enthusiasts, that’s why December of 2014 is a lot better than September of 2013.

TIME animals

There Was a Big Bang for Birds

An ex-crocodile. Clearly a step up
An ex-crocodile. Clearly a step up Luis Costa—AFP/Getty Images

A sweeping new study tells a long genetic tale

If there’s a factory where birds are built, the workers were clearly smoking something the day they designed the hummingbird. And the ostrich. And the toucan. Imagine, too, the pitch meeting for the parrot, (“Let’s make this one talk!”), or the peacock (“So we got this crate of feathers…”).

Of course, that’s not how it really happened. Birds came along without our help, evolving from the Aves class into 23 orders, 142 families, 2,057 genera and finally 9,702 species—the most prolific speciation of all four-limbed vertebrates. The problem with such prodigious divergence is that it makes it hard to determine how the great bird explosion began in the first place. Now, however, in a pair of papers in Science, scientists report that they have an answer. Modern birds, they have learned, got their start like the universe itself—with something of a Big Bang, a burst of specialization that began 65 million years ago with the same asteroid hit that wiped out the dinosaurs and made room for mammals and other land animals.

This finding results from the work of hundreds of scientists at 80 labs and universities across 20 countries, done with the help of bird tissue collected from labs and museums around the world. Those specimens were sent to the Genome Tissue Institute in Beijing, where the basic sequencing was conducted. The first and most basic conclusion the investigators reached was a big one. “This confirms that there was a very rapid radiation and that major lineages of birds were in existence 5 to 6 million years after the extinction event,” says Joel Cracraft, an avian systemicist at the American Museum of Natural History in New York and a contributor to the papers. “They were very widely distributed as well.”

But there was much more to be learned, and that required the hundreds of others scientists to get busy parsing the genomes. A lot of their results live down in the technical weeds, where geneticists speak of such things as total evidence nucleotide trees and GTR+GAMMA models. Among the plain-English findings, however, there were some important top-line results. The investigators identified a sort of progenitor bird, for example, a so-called apex predator that came along shortly after the asteroid hit and was the great-great-great granddaddy of all extant land birds. The descendants that that founding father left can be connected in unexpected ways.

The gaudy flamingo and the proletariat pigeon turn out to belong to sister clades—or groups descending from one common ancestor. Similarly, there is a three-way kinship among the cuckoos; the bustards (medium-size game birds that include the paauw and its larger cousin, the straightforwardly named great paauw); and the turacos. The last group is a brilliantly colored and plumed family of birds that include the African banana eaters and the go-away birds, species that got their names because one of them, well, eats bananas and the other issues a warning call that sounds like it’s saying “go away,” which it sort of is.

Among the more granular discoveries, the investigators report that so-called vocal learners—birds with flexible repertoires of songs and mimicked speech—actually share some of their molecular brain structures with humans. And the very act of singing appears to change the birds’ epigenomes—the regulatory system that sits atop the genes and determines which ones are expressed—meaning that the more frequent the song the more specialized the bird’s genetic wiring will become.

But just in case the big, fun, colorful Aves class gets above itself, the papers do stress that every extant bird can trace its line back even further than the apex predator, all the way to a small and rather vulgar group of ancestors that are actually alive today; the saltwater crocodile, the American alligator and the Indian gharial—which is sort of an alligator with an absurdly skinny snout. For birds as much as for humans, it seems, no matter how high you climb, there are always a few embarrassing family members to keep you humble.

TIME animals

Watch a Slow-Motion Video of a Turkey on a Treadmill

No, it’s not running away from your fork

Animals on treadmills are having a moment today. But where “Munchkin the Teddy Bear” treads that moving belt in the name of cuteness, this turkey trots for science. Thomas Roberts, professor of Ecology and Evolutionary Biology at Brown University, spends his days watching turkeys run on treadmills, as Chris Duffy writes for Digg, to help “scientists understand how to build more efficient robots, to understand neuromuscular disorders, and to design better prosthetics for humans.”

Turkeys, which can reach speeds faster than six miles per hour, work well as research subjects due to their size and anatomy. And if you shoot in black and white and slow down the footage, as Duffy did here, they almost look like something out of an abstract art house film.

Dr. Roberts recently appeared on Duffy’s podcast, You’re the Expert, in which a team of comedians attempts to guess, à la 20 questions, what a professor studies. In addition to Roberts (who, yes, to answer one comedian’s question, studies something that rhymes with “smiology”), the show has featured academics who study sand, fish noises and canine cognition.

Now, for the million-dollar question: Does Roberts eat turkey on Thanksgiving? He does. “I just don’t think about it,” he admits.

Listen to the full episode below:

TIME Biology

See 40 Mind-Blowing Images Captured Through a Microscope

In stunning detail not visible to the human eye, the winning entrants in Nikon's Small World photography competition will give you a fresh view of the world

TIME animals

See the Most Amazing Biology Photos of the Year

The Society of Biology, a British group dedicated to the life sciences, holds an annual amateur photography competition. The theme this year was home, habitat and shelter

TIME animals

Meet the Lumbering, Quarter-Ton, Extinct Kangaroo

Don't call me Joey: Not a kangaroo—but not not one either.
Don't call me Joey: Not a kangaroo—but not not one either. Nobu Tamura—Wikimedia Commons

Sometimes the most fascinating animals are the ones that are no longer with us. The oddly named sthenurine is no exception.

Birds gotta fly, fish gotta swim, kangaroos gotta hop—unless you’re talking about the eight-foot-tall, quarter-ton, kangaroos known as sthenurines (and no, that is not a typo). These distant cousins of modern red and gray kangaroos went extinct about 30,000 years ago, and their fossils weren’t discovered until the 1800s. When the species at last came to light, it was not easy to take seriously, resembling nothing so much as cartoon versions of its modern cousins. “They were short faced,” says Brown University biologist Christine Janis, “not long-faced like modern kangaroos, and the smallest of them were as big as the largest modern kangaroos. It wasn’t clear,” she adds, “how they could hop at that size.”

And according to a new paper Janis just published in the journal PLoS ONE, they probably couldn’t. Instead, she and two co-authors conclude after several years of investigation involving more than 140 skeletons from kangaroos and related species such as wallabees, the sthenurines walked upright on two legs.

The evidence comes from virtually everywhere across the creatures’ anatomy. Their teeth, the scientists observe, look more suited to browsing on trees and bushes than nibbling on grass as modern ‘roos do. That implies the ability to stand upright on two legs to reach the branches.

“They also had flared hipbones,” says Janis, with ample room for large gluteal muscles that would have permitted them to put weight on one leg at a time, something today’s kangaroos never do. Modern kangaroos amble around on all fours—or fives, if you count the tail, which they use for balance—when they’re browsing. When they want to go fast, they hop.

That’s possible only because they have flexible backs and stiff, substantial tails, which sthenurines lacked. The sthenurine hands, moreover, were unsuitable for bearing their weight. “They would have had trouble walking on all fours,” says Janis. The animals’ very bulk would have put terrible strains on their tendons if they even tried to hop.

“Some have argued that the sthenurines might have had thicker tendons to compensate,” Janis says, “but that would have made the tendons less elastic. It just seems biomechanically unlikely.” Any arguments about tendons and other soft tissues are somewhat speculative in ancient specimens, of course. “Imagine that we only knew elephants as fossils,” says Janis. “How would we know for sure they had trunks?”

The other evidence all points in one direction, however. As Janis straightforwardly puts, “just about everything we looked at made us go, ‘oh, that fits in.'” In the often elegant study of anatomy, the answer that fits is usually the answer that’s right.

TIME animals

Study: Chimps Learn How to Use New Tools From Other Chimps

A chimpanzee holds a lettuce at the zoo in Abidjan, Ivory Coast, on June 12, 2014 Sia Kambou—AFP/Getty Images

This means chimps have a prerequisite for human culture

A new study from PLOS Biology found that chimpanzees can learn group-specific behavioral traits from each other, widely considered a prerequisite for human-style culture. The results suggest the foundations of human culture can be traced back to our common ancestry with apes.

Researchers in Uganda noticed that a few chimps in a group started using new kinds of sponges to drink water. Usually, chimps use clumps of leaves to extract the water, but the team observed one chimp using moss instead. Once the other chimps saw him using moss, seven other chimps made and used moss sponges over a six-day period. There was also another variation on the leaf-sponge (re-using an old leaf sponge) that also spread through the group.

“Basically, if you saw it done, you learned how to do it, and if you didn’t you didn’t,” lead researcher Dr. Catherine Hobaiter told the BBC. “It was just this wonderfully clear example of social learning that no one had [witnessed] in the wild before.”

TIME Biology

Meet the Fish That Can’t Get Jet-Lagged

Who cares about the time? A blind fish needs no internal clock
Who cares about the time? A blind fish needs no internal clock Reinhard Dirscherl; Getty Images/WaterFrame RM

There's a reason you get sleepy at night: because it's dark out. Now a little blind fish helps explain all that

Birds have ‘em. Bees have ‘em. Even bacteria have circadian rhythms, the ramping up and slowing down of internal functions that signals organisms to be more or less active, depending on the time of day. Humans have circadian rhythms too—and when they’re disrupted by time-zone changes, lack of sleep or working the night shift, the result can be an increased risk of heart attacks, depression, diabetes, weight gain and more.

For eyeless Mexican cave fish, however, no problem, says a new study in the journal PLOS ONE reports. “Some organisms have stronger circadian rhythms, and some weaker,” says lead author Damian Moran, of the private company Plant and Food Research, based in New Zealand. “But these fish have none at all.”

The finding, says Moran, “just fell into our laps.” He and his colleagues were actually studying the energy costs of vision—that is, how much of the body’s resources evolution thinks it’s worth devoting to having the advantage of being able to see. The Mexican tetra fish is especially useful for such studies because it comes in both a surface-dwelling subspecies and several versions that live in caves, in perpetual darkness (the latter, says Moran, “look a little like Gollum“).

In order to measure the energy cost of having vision, the scientists put both versions of tetra into a kind of fish treadmill, where they could swim constantly upstream while instruments measured their oxygen intake, a gauge of their energy use. To cover all their bases, the scientists tested both types of fish under their most familiar conditions—with a day-night cycle, and in total darkness.

The scientists were looking to measure the differences in energy use between the fish with eyes and those without—but they noticed something else as well. “The surface-dwellers,” says Moran, “had a typical increase of oxygen use during the day, and a decrease during the night. Whereas the cave fish showed a flat line day and night.”

It makes sense: an animal that lives in changing conditions of light and darkness needs to be more active when its food sources are more active, whereas a creature that never sees the light of day probably doesn’t care. Even so, since many organisms that live in utter darkness are descended from surface-dwellers, they maintain at least a weak circadian rhythm. But the cave-dwelling tetra have none, and because they don’t have to ramp their metabolism up and down, they use 27% less energy overall than their daytime-nighttime cousins.

While this is the first such animal ever found, says Moran, the eyeless tetra might actually be just the tip of a gigantic biological iceberg. “Most of the Earth’s biomass lives in areas that never see light at all. I suspect that when we look in the deepest part of the sea or deep underground,” he continues, “we’ll find many organisms that have no circadian rhythms.”

Because after all, what’s the point?

TIME Science

If Synthetic Biology Lets Us Play God, We Need Rules

MOLEKUUL—Brand X/Getty Images

Zocalo Public Square is a not-for-profit Ideas Exchange that blends live events and humanities journalism.

How can we prevent these technologies from falling into the wrong hands?

Synthetic biology has been called “genetic engineering on steroids.” It’s also been described as so difficult to pin down that five scientists would give you six different definitions. No matter how this emerging field is characterized, one thing is clear: the ability to synthesize and sequence DNA is driving scientific research in brand-new and exciting directions.

In California, scientists have created a breakthrough antimalarial drug—baker’s yeast made in a lab that contains the genetic material of the opium poppy. The drug has the potential to save millions of lives—and to ensure drug production that independent of poppy flowers. At MIT, researchers are working on a way for plants to “fix” their own nitrogen, so farmers will no longer need to use artificial fertilizers. And, in the far future, scientists and NASA researchers are looking to create a “digital biological teleporter” to bring to Earth life forms detected on Mars via a sort of biological fax.

What should we worrying about in this moment of tremendous, and potentially cataclysmic, scientific discovery? In advance of the Zócalo/Arizona State University event “How Will Synthetic Biology Change the Way We Live?, we asked experts the following question: Soon we’ll be able to program DNA with the same ease we program computers. What new responsibilities will be imposed on us?

1) Stepping ahead of technology to imagine the world we want to live in

Synthetic biology sees life as an engineering project— a repertoire of processes that can be reprogrammed to produce technologies and products. It envisions powerful new tools for constructing biological parts. Many in synthetic biology celebrate technologies like automated DNA synthesis as agents of “democratization,” potentially allowing easy and widespread access to custom-made DNA. According to their vision, these technologies will enable bioengineers to freely experiment with living systems, accelerating progress in innovation and producing enormous benefits for society.

But there are risks. The question is often raised: How can we prevent these technologies from falling into the wrong hands? DNA synthesis machines cannot distinguish between tinkerers and terrorists. Though this question is crucially important, it is revealing for what it leaves unasked. Why are synthetic biology’s tinkerers presumed to be the safe hands for shaping the technological future? Why do we defer to their visions and judgments over those that we collectively develop?

We tend to focus governance not on projects of innovation, but on how resulting technologies might be used in society. By attending primarily to technology’s “misuses,” “impacts,” and “consequences,” we confine ourselves to waiting until new problems—and responsibilities—are imposed upon us. Science is empowered to act, but society only to react. This leaves unexamined the question of who gets to imagine the future and, therefore, who has the authority to declare what benefits lie ahead, what risks are realistic, and what worries are reasonable and warrant public deliberation?

Our imaginations of the future shape our priorities in the present. It is a task of democracy, not science, to imagine the world we want to live in. Genuine democratization demands that we embrace this difficult task as our own, rather than wait to react to the responsibilities that emerging technologies impose upon us.

Benjamin Hurlbut is an assistant professor of biology and society in the School of Life Sciences at Arizona State University. Trained as a historian of science, he studies the intersection of science, politics, and ethics, with a particular focus on governance of emerging biotechnologies in the United States.

2) Addressing the gap between scientific innovation and human need

When it comes to programming DNA, the greatest challenge we face isn’t how to do it but rather for what purpose. How will we use the molecular tools we develop? The much-heralded promise is that genetic technologies will reveal clues to more effective treatment of disease. A serious challenge to making good on this promise is recognizing the social context—the values, beliefs, and structure in which these tools are called into being— that informs how scientists, policymakers, and the public prioritize their use.

We can start by asking why cutting edge biotechnologies have yet to solve our most intractable and dire global health problems. We assume that these new tools can be used to identify molecular targets to develop vaccines for neglected diseases disproportionately affecting low resource countries. And yet, a 10/90 gap persists in which a mere 10 percent of research is devoted to 90 percent of disease burden worldwide. In a market where male baldness and cellulite reduction take precedence over diarrheal diseases, malaria, and tuberculosis, we need to creative economic solutions to bridge the widening expanse between scientific innovation and human need.

Our social agenda will inform not only what is programmed into DNA, but also who will ultimately benefit from this new technology. Will our efforts bolster advantage among the select few or alleviate the suffering of the invisible many? The answer to that question depends upon whether we decide to leverage our shiny, new tools to address head-on the very old and obstinate problem of inequity.

Sandra Soo-Jin Lee, Ph.D., is a medical anthropologist and senior research scholar at the Center for Biomedical Ethics at Stanford University School of Medicine. Her current book project is entitled American DNA: Race, Justice and the New Genetic Sciences.

3) Rethinking DNA as a building tool

For much of the late 20th century, scientists, writers, and the general public imagined DNA as information. It was code in the form of a chemical, a molecule that directed our development and determined our destiny. This discourse served to organize, guide, and inform the research agenda of scientists for decades.

DNA, as any high school science student knows, exists as a double helix. Its structure is made of four different types of nucleotide subunits—adenine, cytosine, guanine, and thymine. The exact sequence of an organism’s DNA is determined by what scientists call complementary base pairing: adenine always pairs with thymine; guanine connects with cytosine. This predictability allows scientists to synthesize strands of artificial DNA—a technique perfected in the 1980s—which, when properly treated in the lab, can link up to form the desired structure.

Today, a community of scientists has adopted a different way of thinking about DNA. No longer just an information-containing biomolecule, DNA is now used as a building material by chemists, computer scientists, and molecular biologists. Starting with simple two-dimensional geometric shapes, DNA nanotechnologies can now fabricate complex three-dimensional objects capable of performing elementary mechanical functions and computations.

DNA nanotechnology is one part of the growing field of synthetic biology. What scientists will be able to do with the rapidly increasing capabilities is hard to project. To date, successes with DNA nanotechnology have included the construction of increasingly complex three-dimensional shapes, carrying out massively parallel computations, and building “DNA walkers” that can traverse a substrate and deliver “cargoes” of nanoscale particles.

For a historian of science, what is fascinating about this evolving field is this new perspective of DNA. We can no longer see it as just a blueprint for life … we now must also think of it as a building material. What kind of future will we build?

Patrick McCray is a professor in the history department at the University of California, Santa Barbara and the author, most recently, of The Visioneers: How a Group of Elite Scientists Pursued Space Colonies, Nanotechnologies, and a Limitless Future.

4) Ensuring careful consideration of potential impacts

In the decades just before the turn of the 20th century, there was great hope among researchers, lawmakers, and the public that our (then) new understanding of genetics could help to alleviate disease. It was from this promise that the world witnessed the emergence of—and later the horrors of—institutionalized eugenics. Synthetic biology offers similar promise and requires vigilance on the part of those developing the technology to ensure its careful implementation.

Scientists and policymakers have a responsibility to think holistically about how synthetic biology could affect individuals as well as populations, societies, and the human species as a whole. If synthetic biology is carelessly used to create genetic homogeneity as a means to cure genetic disorders, it could be detrimental. From an evolutionary perspective, genetic diversity has been key to the success of our species as it offers alternate solutions to environmental stressors. Alternatively, synthetic biology could also be used as a tool to create new types of genetic variations that, in the right environment, could ensure the survival of our species.

The development of this technology should be driven by the same ethical tenets that drive all current scientific research: respect, beneficence, and justice. The promise of synthetic biology rekindles hope in the discovery of a kind of genetic panacea. But the advent of this technology should, at the very least, solidify our resolve not to repeat the errors of the eugenicists of the past.

Jada Benn Torres is an assistant professor of anthropology at the University of Notre Dame. As a genetic anthropologist, her research interests include genetic ancestry, human variation, and women’s health.

5) Developing governance as innovative as our science and technology

Synthetic biology will present us with an ever-growing number of choices. Choices about what we eat. Medicines we take. Fuels we use. Products we buy. Clothes we wear. Pets we own. Enhancements to our bodies and minds. These new choices will provide us with many important benefits—but they will also confront us with challenging dilemmas.

Some choices made possible by synthetic biology will affect only individuals and their families, while others will have a much wider reach. For example, buying goods made by synthetic biology may displace workers in other nations who make the same products using older technologies or raw materials. When we enhance our own capabilities using synthetic biology, we put pressure on others to make similar enhancements or risk being left behind.

There may also be safety and health risks from the individual choices we make. If people create new organisms in their garage or basement using DIY biology, they may inadvertently create pathogens that put others at risk in their neighborhoods, cities, or even beyond.

Individual choices empowered by synthetic biology with the potential to adversely affect others will put additional burdens and pressures on our societal institutions to make more (and better) governance decisions.

And that is where the problem and danger really lies: At the very moment that new technologies like synthetic biology require us to make more complex decisions, our societal decision-making institutions have never been more broken. Our regulatory agencies are overwhelmed, under-funded, and ossified, our legislatures are gridlocked by partisan bickering and too much information and issues, and our courts are glacial and lacking scientific competency. We urgently need new innovations in institutions and governance to match the rapid new innovations in the science and technology of synthetic biology.

Gary Marchant is Lincoln Professor of Emerging Technologies, Law and Ethics and faculty director of the Center for Law, Science & Innovation at Arizona State University. He teaches and researches governance of emerging technologies.

This originally appeared on Zocalo Public Square.

TIME Ideas hosts the world's leading voices, providing commentary and expertise on the most compelling events in news, society, and culture. We welcome outside contributions. To submit a piece, email ideas@time.com.

TIME Research

Quiz: Can You Answer 5th-Grade Science Questions?

Most Americans lack a basic understanding of science

A new survey on scientific literacy from the Center for Accountability in Science found that most respondents failed to correctly answer questions designed for a fifth-grade science class.

“Most Americans are not armed with the basic facts about science,” said Dr. Joseph Perrone, chief science officer at the Center for Accountability in Science, in a statement. “This alarming lack of scientific literacy makes it easier for the public to be duped by the scary headlines and junk science.” You can get the results of the survey here.

Take our quiz to see if you can answer fifth-grade-level science questions.

Your browser, Internet Explorer 8 or below, is out of date. It has known security flaws and may not display all features of this and other websites.

Learn how to update your browser